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Scaning Probe Microscopy
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Sample Surface
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Quadrant detector

Image formation: Scanning the surface line by line
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Anisotropy: Fast & slow axis

Open & closed loop

Techniques: Mechanical, electrical, magnetic, thermal, optical, . . .

More in Petr Klapetek’s lecture on Friday!
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Quantitative SPM

Hardware Physics Algorithms
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Stage & head
Probes
Electronics
Enviromental
. . .

Probe–sample
interaction
Atomistic modelling
Molecular dynamics
FEM & FDTD
. . .

Filtering &
preprocessing
Feature recognition
Model fitting
Statistical
. . .

Klapetek P., et al., Quantitative Data Processing in Scanning Probe Microscopy, 2nd edition, Elsevier (2018)
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Secret ingredient

?
Stage & head
Probes
Electronics
Enviromental
. . .

Probe–sample
interaction
Atomistic modelling
Molecular dynamics
FEM & FDTD
. . .

Filtering &
preprocessing
Feature recognition
Model fitting
Statistical
. . .

This talk?

Klapetek P., et al., Quantitative Data Processing in Scanning Probe Microscopy, 2nd edition, Elsevier (2018)
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Bad data? Easy!

Many effects conspire to sabotage our SPM measurements
Mechanical & electromagnetic noise, laser interference, cross-talk, changes in probe properties & contact,
contamination & tip convolution, bad feedback parameters, hysteresis & non-linearity, creep, aging, topography
artefacts, . . .
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Good data?

Tip convolution → convolution artefacts

Blind estimation
of tip shape using tip imaging
by sharp surface features

True tip shape

True surface Measured (tip convolution)

Reconstruction
(blind estimate)

Villarrubia J.S., Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation, J. Res. Natl. Inst. Stand. Technol. 102 (1997) 425
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Good data?

Tip convolution → convolution artefacts

Blind estimation
of tip shape using tip imaging
by sharp surface features

True tip shape

True surface Measured (tip convolution)

Reconstruction
(blind estimate)

Similar: tip transfer/point spread function, etc.
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Periodic structures

Different origins:
▶ litography & laser interference
▶ atomic lattices
▶ self-organised wrinkles, domains, . . .

Different purposes:
▶ studying a structure/process
▶ instrument calibration
▶ ex post data correction

Data evaluation generally similar.

Pitch & height standards – but maybe not both from one measruement.
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Evaluation of period/pitch

Spectral density Autocorrelation function

Gravity centres Model fitting/cross-correlationZero crossings

f = 1/T

Frequency

Fourier transform Autocorrelation

T T T

Distance

T T T T T T
Model function

Measured profile

▶ Feature identification (direct space)
▶ Fourier transform
▶ Autocorrelation – not widely used

Nečas D., Yacoot A., Valtr M., Klapetek P., Demystifying data evaluation in the measurement of periodic structures, Meas. Sci. Technol. 34 (2023) 055015
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More is better

5 repetitions

Warm up question

Measuring 5× is about:

(a)
√

5× worse,

(b) the same,

(c)
√

5× better,

(d) 5× better,

(e) ∞× better

than measuring once.
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More is better

5 repetitions

5× longer profile

Warm up question

Measuring 5× is about:

(a)
√

5× worse,

(b) the same,

(c)
√

5× better,

(d) 5× better,

(e) ∞× better

than measuring once.

One longer profile is:
(a) 5× worse,

(b)
√

5× worse,

(c) the same,

(d)
√

5× better,

(e) 5× better.

than measuring 5 shorter ones.
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Scaling
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Scaling power

Model xn = nT

Estimate T̂ =
P∑
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T – period (fitted)
∆T – standard deviation of T
∆x – location error in x
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Scaling power

Model xn = nT

Estimate T̂ =
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∆2

x

Scaling ∆T ≈
1

P 3/2

√
3∆x

T – period (fitted)
∆T – standard deviation of T
∆x – location error in x
P – number of periods

Scaling powers
▶ Single long profile: −3/2
▶ Repeated measurement: −1/2

All good methods are similar – probably a theoretical limit
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The extremes

10-6

10-5

10-4

10-3

10-2

7 10 20 30 40 50 70 100 200 300 400 500 700 1k 2k 3k 4k 5k

700 500 400 300 200 100 70 50 40 30 20 10 7 5 4 3 2 1

4800 samples

Dai05 FT
Zoom FFT
Multi-peak ACF
Gravity centre
Zero crossing
Model fitting
Piecewise fitting
Cross-correlationA

cc
ur

ac
y 
δ r

m
s

Samples per period N/P

Number of periods P

Many periods/few samples per period

Few periods/many samples per period



Mesuring wrong & right Grating Pitch David Nečas 10 / 19

The extremes

10-6

10-5

10-4

10-3

10-2

7 10 20 30 40 50 70 100 200 300 400 500 700 1k 2k 3k 4k 5k

700 500 400 300 200 100 70 50 40 30 20 10 7 5 4 3 2 1

4800 samples

Dai05 FT
Zoom FFT
Multi-peak ACF
Gravity centre
Zero crossing
Model fitting
Piecewise fitting
Cross-correlationA

cc
ur

ac
y 
δ r

m
s

Samples per period N/P

Number of periods P

Many periods/few samples per period

Few periods/many samples per period

10-3

10-2

10-1

100

10 7 5 3 2 1

100 200 300 500 700 1000

A
cc

ur
ac

y 
δ r

m
s

Number of periods in the profile P

Samples per period

0.0

0.2

0.4

0.6

0.8

1.0

10 7 5 3 2 1

100 200 300 500 700 1000

Simple FFT
Manual

S
uc

ce
ss

 r
at

e

Number of periods in the profile P

Samples per period



Mesuring wrong & right Silicon Steps David Nečas 11 / 19

Steps on silicon

Secondary realisation of metre
Preparation of the 2018 update of the SI

Silicon lattice spacing

d220 = 192.015 571 6(32)× 10−12 m

Practical SPM standard
Mono atomic steps on Si (111) surface

Prepared using molecular beam epitaxy

d111 = 313.560 115 1(53)× 10−12 m

Consultative Committee for Length, Mise en pratique for the definition of the metre in the SI (2019)
Tiesinga E., Mohr P.J, Newell N.B. and Taylor B.N, The 2018 CODATA Recommended Values of the Fundamental Physical Constants, (2019, Web Version 8.1)
Fissel A., Kr ugener J., and Osten H.J., Preparation of large step-free mesas on Si(111) by molecular beam epitaxy, Phys. Status Solidi C 9 (2012) 2050
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Evaluation

Preprocessing
▶ line correction
▶ edge detection
▶ terrace marking
▶ connectivity graph

Fitting

Height(x) = s · Level(x) + Poly(x)

s – step height (fitted)
Level – levels (known integers)
Poly – a polynomial (fitted)

Garnæs J., Nečas D., Nielsen L., Madsen M., Torras-Rosell A., Zeng G., Klapetek P., Yacoot A., Algorithms for using silicon steps for scanning probe microscope evaluation, Metrologia 57
(2020) 064002
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Overall shape

Which overall shape is the best? worst?
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Fitting the profile

+ + + + …

steps polynomial background

Height(x) = s · Level(x) + Poly(x)

Distinct fitting functions – Good
Indistignuishable functions – Bad

Staircase – looks like x – bad
Parabolic – looks like x2 – a bit less bad
Amphitheatre – does not look like any polynomial – good

Step error ∆s ∝
√

Q11 · Noise

Cofactor matrix Q = (Normal matrix)−1

▶ does not depend on noise
▶ computed from scalar products of basis fitting functions
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The matrix

Assumptions
▶ ideal geometry
▶ no around-step exclusion
▶ amount of data N → ∞√
Q11N plotted instead of

√
Q11

for meaningful N → ∞ limit

Few terraces
▶ poor measurement
▶ small difference

Many terraces
▶ good measurement
▶ huge difference
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Which one is it?

Which one is better for roughness? Left? Right? Neither?
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Which one is it?

Pretty bad, ≳ 30% bias & poor representativeness. Probably good for evaluation.

Scan line must be long to avoid losing the lower spatial frequencies.

Governed by α = T/L. Should be α ≪ 1.

In AFM usually incompatible with ‘can nicely see features’.

Nečas D., Klapetek P., Valtr M., Estimation of roughness measurement bias originating from background subtraction, Meas. Sci. Technol. 31 (2020) 094010
Nečas D., Valtr M., Klapetek P., How levelling and scan line corrections ruin roughness measurement and how to prevent it, Sci. Rep. 10 (2020) 15294
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Sample tilt
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True topography

+ 

True background B

Measured height h & fitted background B̂

Corrected data z

+ 

Subtracted background B̂

Bias of mean square roughness σ

E[σ̂2] = σ2 − 2D
∫ 1

0
Cn(t)G(tL) dt

T – autocorrelation length
D – dimension (1, 2, . . . )
G – autocorrelation function
Cn – ugly function
n – polynomial degree
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True topography

+ 

True background B

Measured height h & fitted background B̂

Corrected data z

+ 

Subtracted background B̂

Bias of mean square roughness σ

E[σ̂2] = σ2 − 2D
∫ 1

0
Cn(t)G(tL) dt

T – autocorrelation length
D – dimension (1, 2, . . . )
G – autocorrelation function
Cn – ugly function
n – polynomial degree

Autocorrelation function to rescue

E[Ĝ] = G − RnG

G – autocorrelation function
Rn – even uglier linear operator

G knows about its own bias!

Fit G − RG instead of G to experimental data

Gbias
Gauss(τ) ≈ σ2 exp

(
−

τ2

T 2

)
−

√
πnσ2 T

L

(
1 +

τ

L

)
+ n2σ2 T 2

L2

(
1 +

2τ
L

)
Or invert G = (1 − R)−1Ĝ (adventurous)

Nečas D., Self-consistent autocorrelation for finite-area bias correction in roughness measurement, Eng. Res. Express 6 (2024) 025560
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Conclusions

▶ Measuring wrong is easy.
▶ Solid ‘hardware’ part ̸⇒ useful data.
▶ What do you measure?
▶ Intuition often fails us.
▶ Simulate!

Almost everything is implemented in Gwyddion.

Nečas D., Klapetek P., Study of user influence in routine SPM data processing, Measurement Science and Technology 28 (2017) 034014
Nečas D., Klapetek P., Synthetic Data in Quantitative Scanning Probe Microscopy, Nanomaterials 11 (2021) 1746
Klapetek P., et al., Quantitative Data Processing in Scanning Probe Microscopy, 2nd edition, Elsevier (2018)
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Conclusions

▶ Measuring wrong is easy.
▶ Solid ‘hardware’ part ̸⇒ useful data.
▶ What do you measure?
▶ Intuition often fails us.
▶ Simulate!

Almost everything is implemented in Gwyddion.

Nothing you saw was real SPM data.

Nečas D., Klapetek P., Study of user influence in routine SPM data processing, Measurement Science and Technology 28 (2017) 034014
Nečas D., Klapetek P., Synthetic Data in Quantitative Scanning Probe Microscopy, Nanomaterials 11 (2021) 1746
Klapetek P., et al., Quantitative Data Processing in Scanning Probe Microscopy, 2nd edition, Elsevier (2018)
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