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Compound
semiconductors and
heterostructures
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Elements used in semiconductors

First, germanium and afterwards silicon were discovered
to have semiconductor properties
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Elements used in semiconductors

Later, in 60-ties and 70-ties also |ll-V semiconductors were
prepared also in layered structures (so called heterostructures)
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[I-VI semiconductors were discovered approx ten years later

Elements used in semiconductors
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Elements used in semiconductors

Finally, nowadays semiconductors employ also the small atoms
in the first raw with strong bounds and large band gaps
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Sirka zakazaného pasu [eV]
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Binary and ternary compound semiconductors

Bandgap energy Eg (eV)
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Many semiconductors are still missing in this graph .
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AlGaAs/GaAs double heterosructures

Zores Aljorov Herbert Kroemer

The first heterostructure was designed Z. Alfjorov and H. Kroemer. They succeeded to
substantially increased emission intensity and prepared first laser diodes. Nobel Prize
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Separate confinment of electrons and photons

Top Metallic
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Separate confinment of electrons and photons
— another increase of emission intensity of laser diodes
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Semiconductors is a kind of toy
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To design properly heterostructure with required properties you have to know the properties of bricks:
position of conduction and valence band, lattice parameter, polarization, effective masses...
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http://iopscience.iop.org/0957-4484/24/20/202001/article

There are many other possibilities for heterostructure design
and their applications such as: Tandem solar cells

Energy Solar photo-energy distribution

e

New cell
- Pravious cell el
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http://cleantechnica.com/2013/05/05/sharp-boosts-its-triple-junction-solar-cell-efficiency-another-0-02-regains-the-record/

Blue VCSEL structure

TCO hole spreading layer

p-type AlGaN EBL
n-type annular contact

top dielectric DBR

3

p-type annular contact
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- bottom AllInN/GaN DBR
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Structures with quantum dots

Quantum dot active layer



http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0CAcQjRw&url=http://en.akihabaranews.com/47223/networking/data-transmission-at-25gbps-via-quantum-dot-lasers&ei=xp_kVOWaLIfJPOnIgcgD&bvm=bv.85970519,d.bGQ&psig=AFQjCNGovpU2RvWgtAzkpxtlCTJkYHkHKw&ust=1424355499955135

Sofisticated ,,core-shell* structures

U


http://spie.org/x38625.xml

A growth of heterostructures
Is enabled by epitaxy

Many epitaxial techniques:

= Liquid phase epitaxy (LPE)

Liquid-Phase
Epitaxy, LPE

Physical Vapor
Deposition, PVD

Chemical Vapor
Deposition, CVD

Precursor gas

g Q Q

= Vapour phase epitaxy (HVPE, PVD, MBE,
PAMBE, ALE, PECVD, MOVPE (MOCVD))




MOVPE - principle
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MOVPE
Precursor moleculesc
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MOVPE
Physical and chemical processes
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Principial scheme of

iz £PiX Metal-Organic Vapour
Phase Epitaxy
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Bubblers — containers for metalorganics
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Growth temperature

Growth rate
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Growth temperature vs. pressure
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Substrate orientation

» Incorporation of atoms at step edges
»Higher growth rates

® Gallium
»Higher quality films O Nitrogen
T e ’
CH
P o
CH \i
. Misoriented (off-cut substrate)
e Net surface diffusion of atoms
On-axis substrate from high to low steps

MOCVD of compound semiconductors is usually performed on
substrates misoriented by 0.1 to 3 towards a certain
crystallographic direction
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CCS 3x2 FlipTop reactor

Substrates are placed on the heated susceptor with pockets. The precursors are
decomposed above heated substrates and the atoms are deposited on the surface.
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MOVPE is dominant technology for nitride semiconductors

MOVPE aparature Aixtron CCS 3x2
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reactor types



Horizontal reactors

high-frequency generator
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Vertical reactor

L pyrometerprobe

// ] “showerhead" injection
_— /
L rou 7
: = i sl L
, % - i — THIHEE B water cooling
? groupv L) [T
T wafer
e
T graphite susceptor
—— heater
quariz liner
bal F-1 /
=  mem—— water cooled
/ stainless steel wall
exhaust [ -j]—w
outlet Z .
| quartz tube

N Fyzikalni ustav
o F Z U Akademie véd — r—
) Ceské republiky



Akademie véd

Growth chambre after epitaxy




Industrial reactors
Integrated Concept System IC 2

Close Coupled
Showerhead® 55x2”
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AIX 2600G3 Planetary Reactor® (35x2")
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Industrial reactors — vertical Turbodisc reactor
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Industrial reactors — vertical Turbodisc reactor

turbodisc



https://youtu.be/FpAEr-xFfgY

Industrial reactors — vertical Turbodisc reactor



2018 global epitaxy growth equipment market share

(Source: Epitaxy Growth Equibment for More Than Moore Devices Technology and Market Trends 2020 report, Yole Développement, 2020)
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In situ monitoring

Reflectance
Curvature
True temperature
RAS — Reflectance anisotropy spectroscopy



Reflectivity

Growth Monitoring

» Reflectance interferometry e |
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Reflectivity
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What influence wafer curvature
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Why the wafer curvature is so important?

1.  With increased curvature during
epitaxy the temperature over
the wafer is inhomogenious,
which has impact on
homogeneity of epilayer
properties

2. Wafer curved after epitaxy

complicates furthe technological
steps (litography)
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Measurement of wafer curvature - temperature
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In case of non direct semiconductors, dopants with deep levels and Heisenberg relations were
employed



Curvature caused by strain - examples
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True temperature measurement
Emisivity corrected pyrometry
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RAS - reflectance anisotropy spectroscopy
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RAS - reflectance anisotropy spectroscopy

RAS can be used only

for cubic crystal lattice:
GaAs, GaP, GaSb, InAs...

As:Ga=1.75:1.0

(2x6)

§0Ga
=0 As

[110]

photon energy [eV]
GaAs (001)

B2(2x4)

As:Ga=0.50:0.80

o(2x4)
As:Ga=0.5:1.0




RAS - reflectance anisotropy spectroscopy
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In situ growth monitoring and controling I11

Quantum dot growth
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Re (dr/r) [107]
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Other extremely important property of the Reflection Anisotropy
Spectroscopy is possibility of monolayer growth oscillations:
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GaN epitaxy

challenges
the first motivation: blue LEDs



LED history
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Nick Holonyak George Craford *Shuji Nakamura
Syracuse, NY St. Louis, Mi Tokushima, Japan
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NN

W

Band Gap Energy (eV

The first LEDs were based o phosphides

O AN ® wurzite structures
BN Nl InGaP, GaAsP
and GaP LED
3 5 6 7 and Heisenberg relations were


http://commons.wikimedia.org/wiki/File:LEDs.jpg

Without blue LEDs none of following applications would be
possible:
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LED high beam for cars

The laser light is used only in most expensive cars, since the main problem is the sufficiently
efficient phosphor whith long life time which can transform the laser light.
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Blue VCSEL structure

TCO hole spreading layer

p-type AlGaN EBL
n-type annular contact N

N
Si0, insulating layerx >3

top dielectric DBR

p-type annular contact
p-type GaN interlayer

InGaN/GaN QWs (QWs-1)

——— n-type GaN interlayer

InGaN/GaN MQWs (QWs-2)

- bottom AllInN/GaN DBR

nid-GaN template

oxidized AllInN nir-Gali nterigyer c-plane sapphire or FS-GaN substrate

current aperture
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New LED application
Pink green houses ©
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Possible semiconductors for blue LED
Sulfides-selenides, silicon carbid, ZnO or nitrides?

AIN @

6 b

Band Gap (eV)

apphire O
'1' InAs InSh
| | (( | p ()
T [ )) T 5
3.3 36 5.43 6.05 6.5
Lattice Constant (A) at 300k

07 =

Sulfides-selenides have weak bonds and the lifetime of LEDs was only few hours. SiC is non direct
semiconductor with very low luminescence efficiency. ZnO is dificult for doping and it cannot form
heterostructures. Nitrides are very suitable, but there were no available substrates for epitaxy.
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Wurzite structure of GaN

L attice constants:
a=319A
c=510A

3,,1\&?/‘/“ \:‘g_ |6

XY
¢ R

'

Strong binding of atoms:
* High temperature stability
 Difficult to prepare bulk semiconductor



http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&docid=VeWvCStlRLqUMM&tbnid=BT9MjspxBAmGyM:&ved=0CAcQjRw&url=http://www.psmag.com/navigation/business-economics/gallium-nitride-silicon-power-energy-55405/&ei=lYg2VJmKHMPgyQOflYDoCw&bvm=bv.76943099,d.bGQ&psig=AFQjCNHrtgpa6nX8iABoUfFZXGO4eDXQSA&ust=1412946328782404

GaN on saphire substrate

(b)

O O-plane of Al,O,(sapphire)
O Al-plane of AIN

V. P. Kladko et al., Appl. Phys. Lett. 95 (2009) 031907

Saphire substrates were very promissing, but not ideal.
The strain was still too high
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Nobel prize laureates for physics 2014

lsamu asaki Hiroshi mao SHuji Nakamura
Univerzity of Nagoja Nichia

After 20years battle this 3 scientist succeded to improve the growth of GaN
on sapphire and to produce the first blue LED
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Japanies soldiers

“ A
Jokoi Shoichi Hiroo Onoda Teruo Nakamura
Guamo (Pacific) Philipines Indonesia

Although their fight was supposed to be as useless as the fight of these 3 Japanies soldiers who
did not accept the Japan capitulation and fighted against US still in 1970.
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Dislocation in GaN after epitaxy on saphire

« Growth without low
/ temperature buffer layer
* |Improvement after low
temperature buffer layer

The main idea was to grow the buffer at very low temperature. It resulted
in very rough surface which enable to curve the dislocation. Dislocations
FZU o mutualy anihilated and only few of them penetrated into the upper layers.



P-type doping by Mg atoms

Another problem was p-type dopping. Mg was supposed to be suitable dopant, but although there
was enough Mg atoms incorporated in layers, they did not have p-type conductivity. The reason
was H atoms on neighbour nitrogens, which compensated effect of Mg acceptors. Annealing in N2
atmosphere helped to solve this problem.
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InGaN QW - blue luminescence

Band Gap Energy (eV)

34 32 33 34 35 36
lattice constant (A)

GaN have luminescence in UV region. To obtain Blue light big In atoms were incorporated in GaN
lattice. InGaN layers were later prepared as thin quantum well layers (QW) which signifficantly
enhanced luminescence efficiency.
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Precursor molecules

Buffer QW
carrier gas: H2 carrier gas N2
o

TMG ®
a®
0'{ NP

o’

® siH NH!
.’ !

TMGa + NH; — GaN + 3 CH,

Rlademie et Different type of precursors has to be used for the growth of particular layers

eeeeeeeeeeeeee
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Growth in N2 and H2 atmosphere

Height Sensor 1.0 um
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InGaN QW - increased luminescence intensity

Area
4 Bright spot
e Dark

PL Intensity (arb. units)

Energy (eV)

Luminescence intensity is increased in places with

higher In content (potential wells for carriers)
N FZU &



Polar surfaces

Ga-face N-face

[0001]

Substrate Substrate

Very important are polarization properties of nitrides which are caused by non equivalent bonds
in wurzite structure. For luminescence applications the polarization is harming, but in HEMTs
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Electric field between polar and nonpolar

heterojunctions
Polar =1~ Nonpolar (Semipolar)
m‘plan% o-plang

Conduction band

i

Efficient Nonpolar
Recombination
{11-22} , {20-21) ,
[» . |.-l | [ ‘TR
N W N '4@)
— Y =2 J
Semipolar

In InGaN QWs the polarization field separates spatialy electrons and hole, theirwave function
overlap is lower and luminescence efficency is suppressed.
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Polarization in AlinGaN layer on
GaN

Polarization of Al,In,Ga,_, N layer
with respect to the GaN as a
function of Al and In content in the

layer
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Substrates for nitrides

~ Substrate material properties for GaN deposition:

Coefficient of linear thermal
expansion (x108)K-1

Lattice Mismatch
(%)
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> 8

13.8

SiC

~ 2.8

3.6

GaN

0

AIN

2.5

Si
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Reflectivity (reference sapphire)

0 5000

Time [s]

Fig. 2. Typical reflectance transient taken from a GaN growth run. AFM insets show the morphology at different stages of growth as the
nucleation layer before (a) and after recrystallization (b), at the start of epilayer growth (c) and the final surface with atomic steps after

o\ coalescence (d).
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Our structures suppression od dislocation density
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Increasing the coalescence time by V/Ill ratio
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Increasing the coalescence time by temparature
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Semiconductors are not only silicon
Ga,0

SiC
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GaN applications

lu.s. Gallium Nitride semiconductor devices market, by product, 2014 - 2025 (USD Mn)

237.3 ..l
---...

2014 201 2006 201/ 2'J"1E 2'J"1'Ei 2020 2021 EﬂEE 2023 2024 2025

B GaN radio frequency devices = Opto-semiconductors B Power semiconductors
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GaN RF applications
5G networks — base stations

Higher bandwidth enable higher
capacity — higher number of connectec
devices — higher power requirements

high power + high frequency= GaN

Wavelengths used in 5G have shorter propagation
distances — increased density of base stations



Nanoheterostructures:

Quantum Well Wire Dot
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Epitaxy of nanoheterostructures:
Nanorods QDs
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Nanoheterostructures:
QWs
For fast scintillators



Scintillator structure

In our laboratory scintillator
structures are developed. They
have to contain much more InGaN
QWs than in LED structures, to
detect bigger part of the penetrated
ionizing radiation

nx5 In, Ga, o,N/GaN MQW
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Cathodoluminescence of structures
with different QW numbers
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Increasing thickness of the active layer
Increases also V-pits

2.0nm 3.0 nm

-5.8 nm -10.0 nm

10.0 nm 10.0 nm 15.0 nm
-30.0 nm -40.0 nm -50.0 nm

1.0 um

1.0um

Height Sensor Height Sensor

V- pits are very interesting defects in nitride semiconductors which
are believed to enhance the luminescence efficiency of InGaN QWs
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TEM and HRTEM images of V-pits

V-pits are formed arround dislocations.
InGaN QWs on V-pit sides are thinner
than on flat surface. The electron energy
in thinner QWs is higher. That is why
electrons do not penetrate into V-pit
sidewalls and are effectively separated
from dislocations, where non-radiative
recombination takes place — see
following slide.

N FZU 555



A FzZU

V-pits

{‘i‘\m \\x\x\‘%\\\\x\\kx\x\\ 3 \‘?\\\ SR \‘\Q\\“m&\x\\

NN

S
Hﬁ\ St B R R SR
Ll
x\\\ 2 ;%\%\m iRy {:\\x x‘\\ \%\?\N ;%\{\&

%%%“

w;.x w,\ i, RRRRT

\ |
\‘}‘\bf‘\b?\w ) :\}.“ 5

R\‘\\\K\ L

R x.-f/

£
: e
4 b
"af; "a-ﬂ/:"a a. "4” "a:i;f"a
'{P:? e }? :f/, PR f:?,
‘*',f(‘I— G
Adid i i f,%{-’rf e
P’P”i’f’x’/ ; e
.
2 { dislocation - vy
i %f’/ ;;;}ff o /f//;f.-" o
e ;;f ;;;;ﬂ %‘ﬂ”-‘.‘f R
R A i A AR

Fyzikalni ustav
Akademie véd
Ceské republiky




Scintillators

Comparisson of luminescence of scintilator structures
before and after optimization
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HR TEM image of InGaN/GaN MQW structure
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Electric field between polar and nonpolar

heterojunctions
Polar =1~ Nonpolar (Semipolar)
m‘plan% o-plang

Conduction band

i

Efficient Nonpolar
Recombination
{11-22} , {20-21) ,
[» . |.-l | [ ‘TR
N W N '4@)
— Y =2 J
Semipolar

In InGaN QWs the polarization field separates spatialy electrons and hole, theirwave function
overlap is lower and luminescence efficency is suppressed.
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QWs on nanorods
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Nanoheterostructures:

Nanorods
For solar H, generation
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Valence and conduction band vs. redox H,0O potencials
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InGaN has optimal band alignement
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Core-shell InGaN/GaN micropillars for solar photocatalysis

SEM SE mode of

SEM SE mode of

InGaN/GaN nano- InGaN/GaN nano-
rods. rods.
SEM cathodoluminescence The same rod. The same position.
of InGaN/GaN nano-rods
shows different composition SEM cathodoluminescence of
in polar direction, which can InGaN/GaN nano-rods.
separate electron-hole pairs. Blue are GaN seeds not grown to rods. ”
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Core-shell structures - SEM

InGaN/GaN core-shell structure
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Figure 3: SEM images of nanorods in the sample centre
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Semipolar InGaN/GaN MQW 3D struktures

« Self assembled in nitrogen atmosphere

elektrony
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First results

70
—-e—-572B
60 1 —@—856
—@—3885
50 1 —@—887
- Ko e —@— 388
g c 2 401 _e-8s53uGan
&N ({) E —8—485A
a 9 O 484A
@
®
(\ Mereno s excitaci 365 nm!
OJ FZU /C.\I(I((:| mp bldky

103



SEM (45°): RR241220_GaN_Ni mask_etching in SiCl4+Ar (30 min)

SM: DEPTH
SEMMAG: 8.85kx  Det: In-Beam SE
View field: 35.7 ym  Date(m/dly): 12/18/24

s e
§Z4Ar (zgg/fieé%éryn), 20 mTorr, RF power 75 W, ICP power 45 W, 30 min



Nanoheterostructures:
QDs
For fast scintillators
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Data transfer throu gh o tlcal waveguides

Map | Satellite

dcean
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Attenuation in optical waveguides

: : A% First
Three windows suitable for data transfer 100 Window

L Early 1970s

Attenuation (db/Km)

1 1
500 1000 1200
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Sirka zakazaného pasu [eV]

4

Different semiconductor structures suitable for 4 windows
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Sirka zakazaného pasu [eV]

4

Different semiconductor structures suitable for 4 windows
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Sirka zakazaného pasu [eV]

Different semiconductor structures suitable for 4 windows
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GaAsSb/InAs/GaAs QDs
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GaAsSb/InAs
QDs
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Summary

Epitaxy of Heterostructures

MOVPE - industrial epitaxy

Reactor types: horizontal (planetary) and vertical (CCS)
In situ monitoring (Reflectance, curvature, TT, RAS)
GaN epitaxy challenges (substrates, doping, polarization)

Nanoheterostructure for applications — QW, NR, QDs (in FZU)
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