

OPERA COST Action Training School 2025

Applications and Characterization of Epitaxial Materials

COST Action CA20116

OPERA
European Network for Innovative
and Advanced Epitaxy

4th OPERA COST Action Training School (hybrid event)

Applications and Characterization of Epitaxial Materials

For private participants at
Faculty of Science (Kotlářská Campus)
Masaryk University
Brno, Czech Republic

with technical session at
CEITEC, Brno University of Technology

Deadline for registration: 30th April 2025

No attendance fee

Chair: Lenka Zajíčková
E-mail: lenkaz@physics.muni.cz
<https://cost-opera.eu/>

Funded by the European Union

MUNI
FACULTY OF SCIENCE

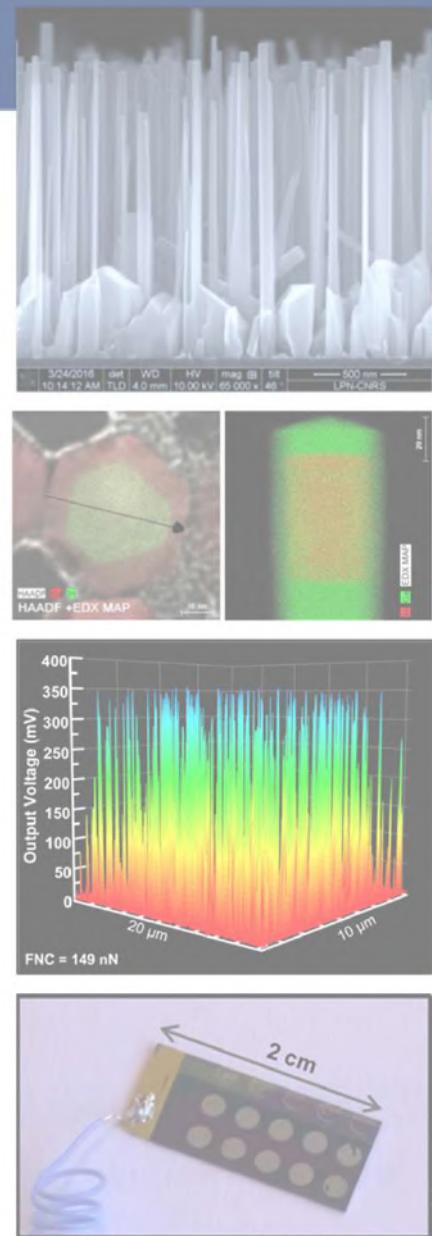
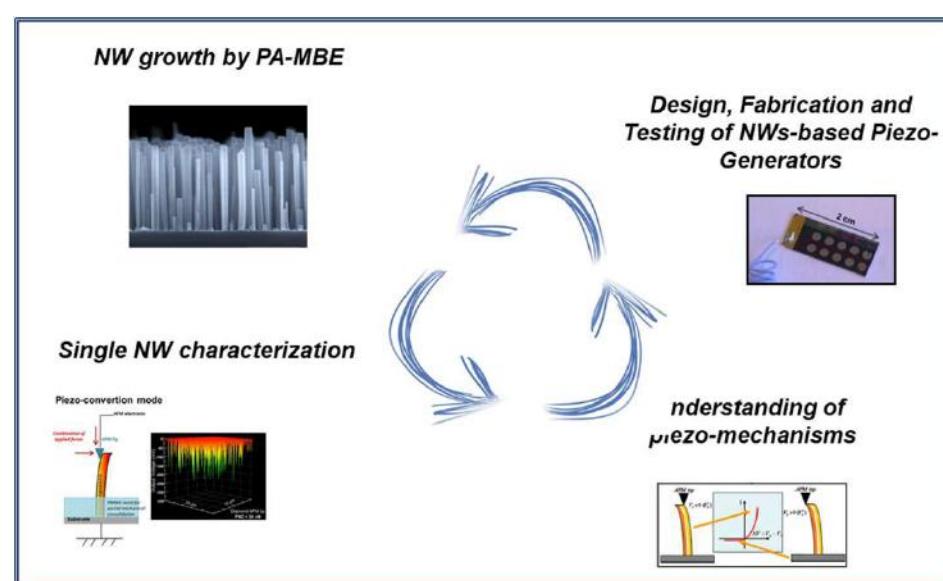
CEITEC

BRNO
UNIVERSITY OF TECHNOLOGY

COST Action CA20116

European Network for Innovative
and Advanced Epitaxy

Presentation of OPERA COST action



Presentation to national COST Action

Dr. Noelle Gogneau - Chair
Dr. Yamina André – Scientific Grant Holder

Dr. Noëlle Gogneau

Development of high-efficient and ultra-compact piezo-transducers based on III-N NWs for supplying μ -sensors and medical implants

université
PARIS-SACLAY

410
PERSONNES

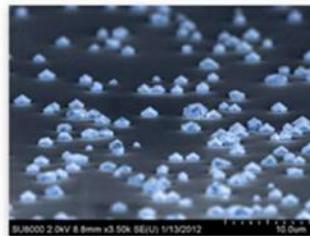
120

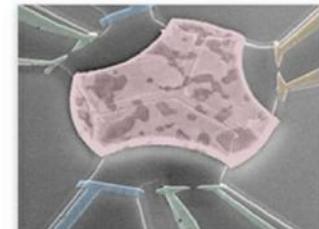
CHERCHEURS ET
ENSEIGNANTS-
CHERCHEURS

80

INGÉNIEURS, TECHNIENS
ET ADMISTRATIFS

18 000 m²


DONT 2 900 m² DE SALLES
BLANCHES


4 DEPARTMENTS

Photonics Dept.
*From fundamental
research to the
development of new
photonic devices*

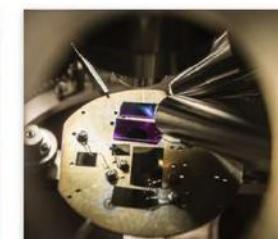
Materials Dept.
*Epitaxy of materials and
study of the properties of
new structures with
advanced functionalities*

Electronic Dept.
*Understanding of
phenomena and
realization of devices at
the nanometric scale*

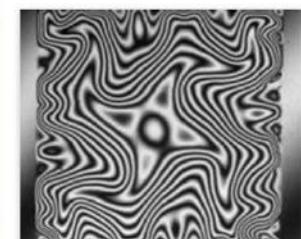
**Microsystem &
Microfluidic Dept.**
*Study and understanding
of innovative micro / nano
devices*

*Innovation is essential
for the R&D of
tomorrow!*

6 PLATEFORMES


PIMENT
PLATEFORME D'INNOVATION EN MICRO ET NANO-TECHNOLOGIES

POEM
PLATEFORME D'ELABORATION DE MATERIAUX


PANAM
PLATEFORME D'ANALYSE DES MATERIAUX

Expérimentation RF et
optique

Instrumentation

Plateforme multi-
physique

**Technology
platform**

Clermont-Ferrand

A central position in Europe... and in France !

400 000 inhabitants (37 000 students)

UNESCO heritage (2018)

A dynamic economy

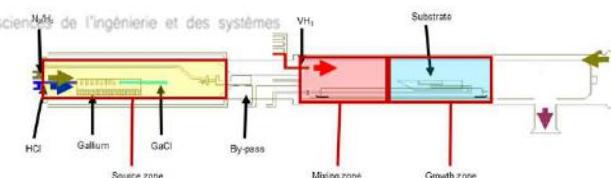
OPERA

COST ACTION CA20116 <https://cost-opera.eu>

OPERA Grant Holder

Franziska Fischer
Administrative Grant Holder

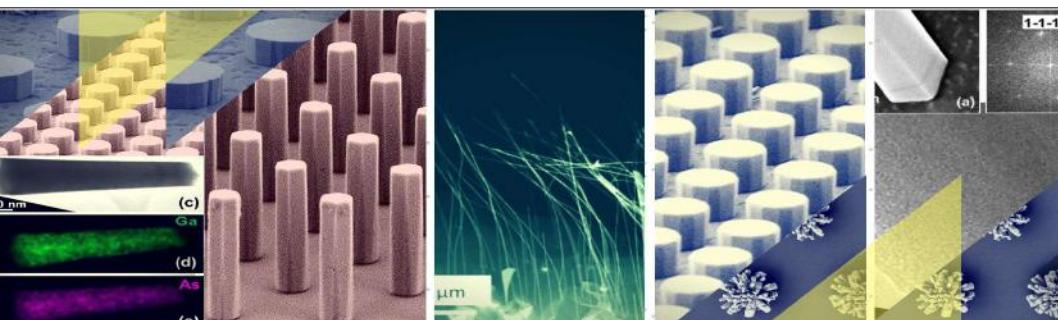
Yamina André
Scientific Grant Holder


Some big company names :

Michelin,
Limagrain,
Volvic
IBM...

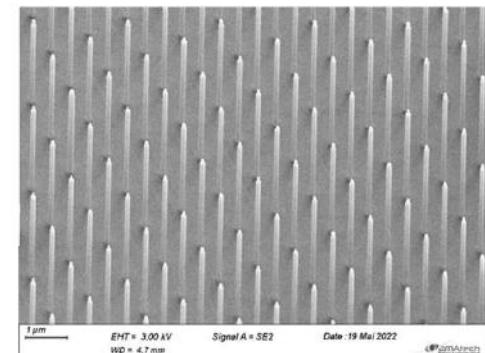
Sectors with international reach:

Logistics and transports,
Mechanics,
Biotechnology,
Food industries...



III Elements : III-Cl_x (GaCl, InCl, InCl₃)
V : VH₃ (NH₃, AsH₃)
Low material consumption
(average total flow 3L/min)

III-V



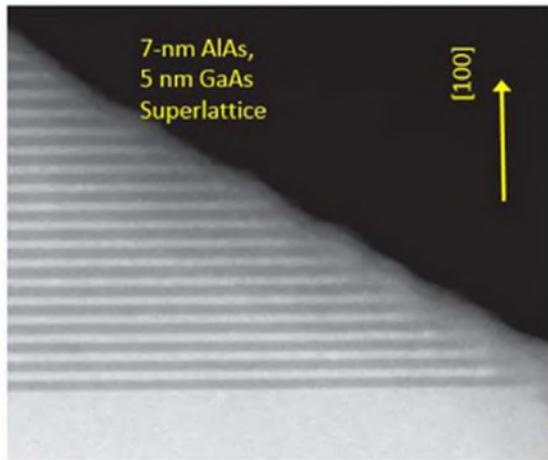
Possibility to tune the growth rate from
(1 µm/h to 130 µm/h)

Epitaxy of III-V nanostructures and nanowires

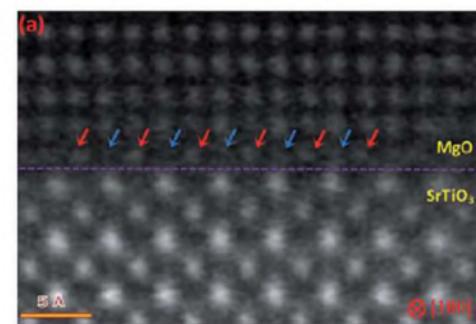
by Hydride Vapor Phase Epitaxy (HVPE)

Pattern characteristics:
Pitch = 1 µm
Hole diameters = 80 nm

Photodetection
Energy Conversion

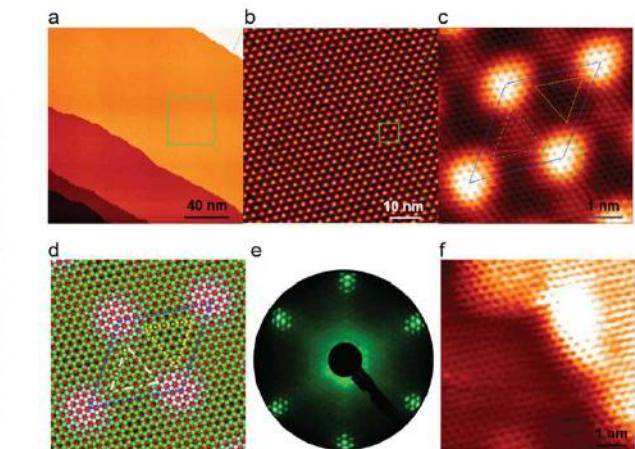
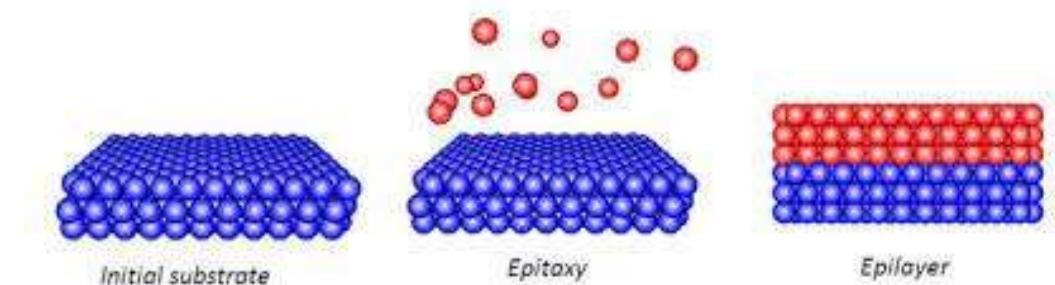

Epitaxy – a little history !

OPERA COST Action


Opening Calls

Epitaxy

Refers to the growth of a material with a highly ordered atomic arrangement (thin films, nanostructures, 2D materials, inorganic or organic materials) on top of another one (crystalline, amorphous material)

MBE of AlAs/GaAs superlattice [1]

(a) HAADF and (b) ABF STEM image of the MgO/STO heterointerface [2]

The word **epitaxy** derives from the **Greek prefix**
epi meaning “upon” or “over”
taxis meaning “arrangement” or “order”

Epitaxially-grown wafer-size graphene on a Ru(0001) surface [3]

Epitaxy – A little history

[4]

"In 1951 Gordon Teal and Howard Christensen at Bell Labs developed a process, now called epitaxial deposition, to grow a thin layer of material on a substrate that continues the underlying crystalline structure. Sheftal', Kokorish, and Krasilov described similar work on germanium and silicon in the U.S.S.R. in 1957."

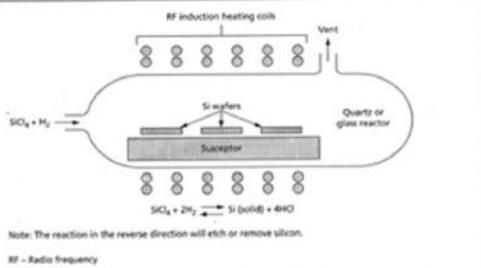
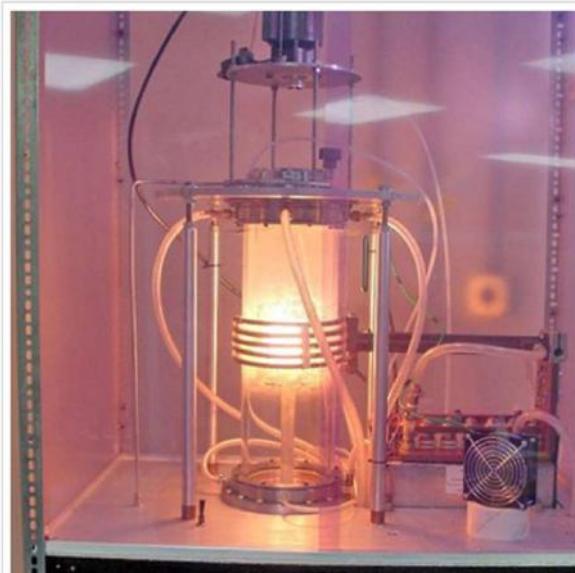



Diagram of a simple epitaxial reactor
© 2006-2007 Alcatel-Lucent. All rights reserved

A research-scale epitaxial reactor in operation
Credit: University of South Carolina

The screenshot shows a website section for the year 1960. At the top, there are two images: a green circular logo on the left and a yellow rectangular image of a microchip on the right. Below the images is a navigation bar with links: Welcome, Timeline, People, Companies, Resources, Glossary, and a search icon. The main title is "1960: EPITAXIAL DEPOSITION PROCESS ENHANCES TRANSISTOR PERFORMANCE". Below the title is a subtitle: "DEVELOPMENT OF THIN-FILM CRYSTAL-GROWTH PROCESS LEADS TO TRANSISTORS WITH HIGH SWITCHING SPEEDS." To the right of the title is a portrait of a man, identified as Ian Ross. A text box to the right of the portrait contains the original quote from 1951. Another text box to the right of the portrait provides additional context about Ian Ross's work in 1960. At the bottom, there is a note about the process being offset by improvements in device performance.

1960: EPITAXIAL DEPOSITION PROCESS ENHANCES TRANSISTOR PERFORMANCE

DEVELOPMENT OF THIN-FILM CRYSTAL-GROWTH PROCESS LEADS TO TRANSISTORS WITH HIGH SWITCHING SPEEDS.

In 1951 Gordon Teal and Howard Christensen at Bell Labs developed a process, now called epitaxial deposition, to grow a thin layer of material on a substrate that continues the underlying crystalline structure. Sheftal', Kokorish, and Krasilov described similar work on germanium and silicon in the U.S.S.R. in 1957.

At the urging of Ian Ross, a Bell Labs team led by Henry Theurer used chemical-vapor deposition to add a thin epitaxial layer of silicon between the base and collector of a transistor in 1960. This approach raised the transistor's breakdown voltage while dramatically increasing its switching speed. [1961 Milestone] two important circuit-design characteristics. The added manufacturing cost of the extra

process step was more than offset by improvements in device performance. The technology was quickly transferred to Western Electric and used in manufacturing silicon transistors for electronic telephone switching in the Bell System.

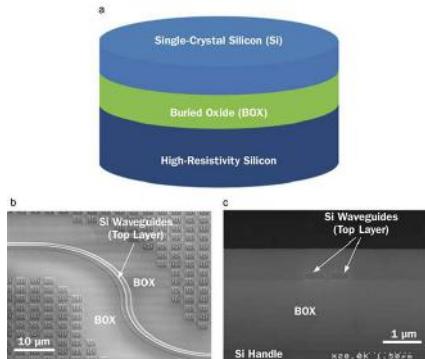
Epitaxy – A little history

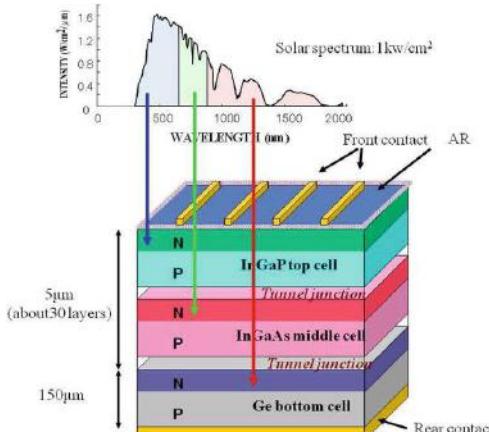
The beginning of the 21st century is also marked by Nobel Prizes highlighting the strong impact of epitaxy in research and innovation

Between 2009 and 2014, the Nobel Prize foundation has honored numerous scientists for their **works using epitaxy and has enabled and encouraged applications that are now commonly used**

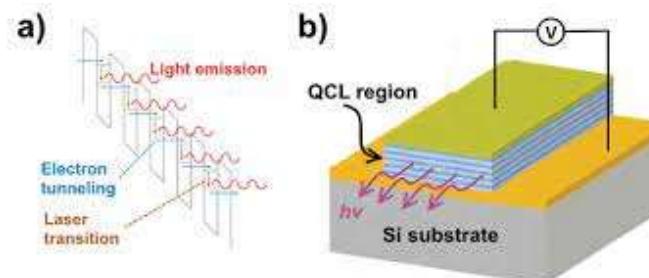
2000, H. Kroemer & Z. I. Alferov
"for developing semiconductor heterostructures used in high-speed- and opto-electronics"

2007, A. Fert and P. Grünberg
"for the discovery of Giant Magnetoresistance."


2009, W.S. Boyle & G. E. Smith
"for the invention of an imaging semiconductor circuit – the CCD sensor"


2014, I. Akasaki, H. Amano & S. Nakamura "for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources"

Epitaxy – Towards applications


“Conventional” semiconductors, the first grown, represent the most prominent used materials in applications of epitaxy

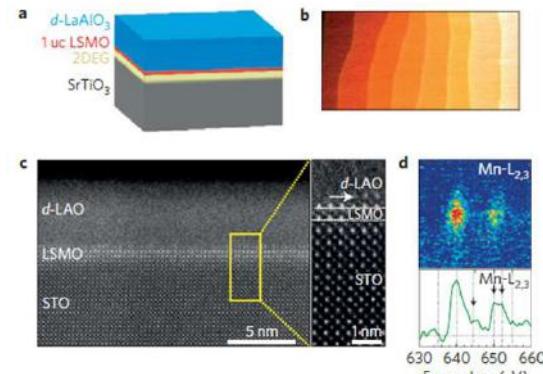
SOI Technology Lights Up the Next Wave of Photonics Solutions [10]

High-Efficiency GaAs-Based Solar Cells [9]

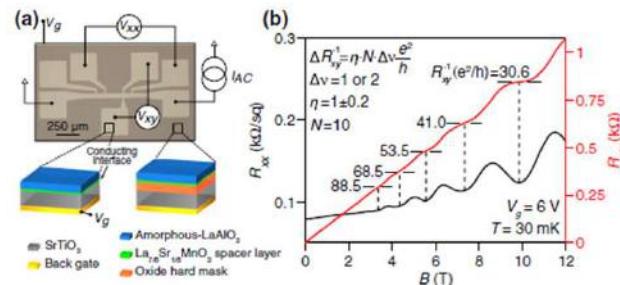
Quantum Cascade Laser [5-7]

Green light-emitting diode (LED) epitaxial structure [8]

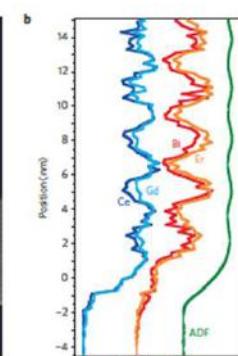
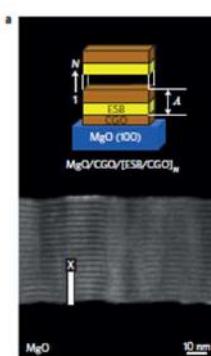
Although epitaxial 2D-layers based on silicon and III-V semiconductors have largely demonstrated their potential in terms of innovation, continuous efforts in the development of **epitaxy have realized new breakthroughs opening the way towards more efficient, low cost and/or more eco-friendly devices.**

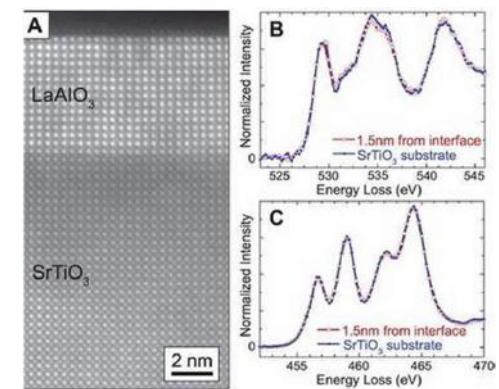

Epitaxy – Towards applications

The past two decades have also seen an impressive boom and development of a wide range of novel epitaxial materials, combinations and forms of materials


OPERA
European Network for Innovative and Advanced Epitaxy

Functional oxides include a wide diversity of material systems ranging from simple binary materials to complex oxide heterostructures

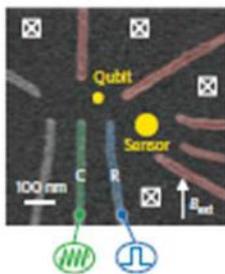


Their large variety of properties offers a step change across a multitude of applications spanning from electronic devices to energy applications [11-12]


2D electron gas [13] with high mobilities [14]

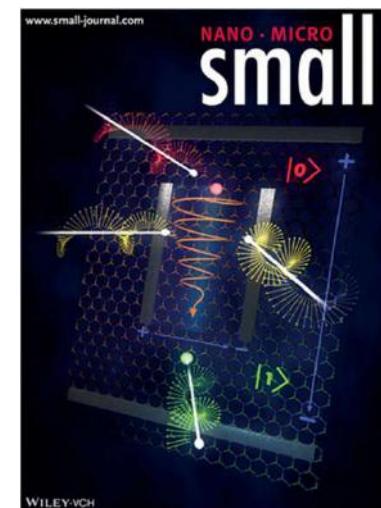
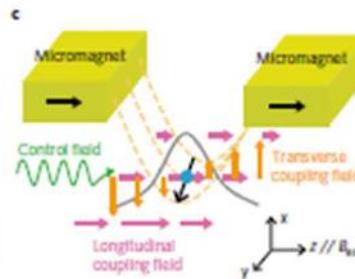
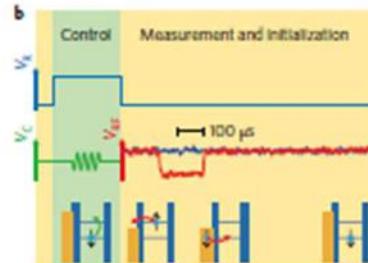
Observation of the quantum Hall effect [15]

Energy [17]

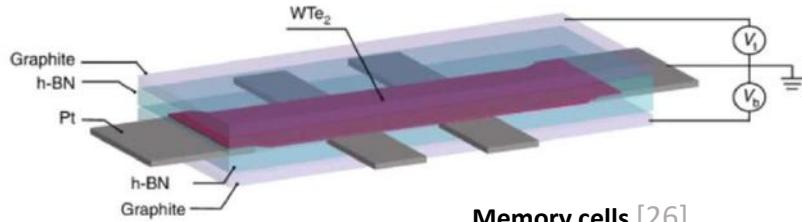
Superconductivity [16]

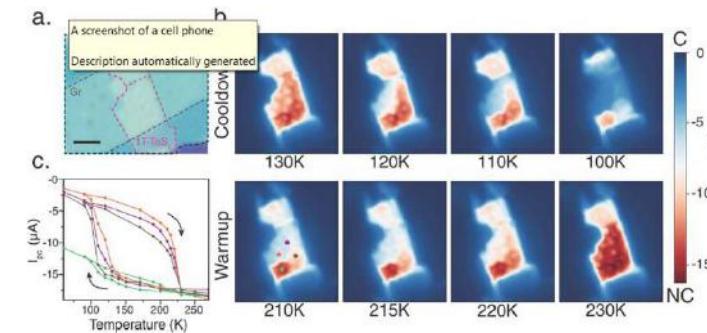

Epitaxy – Towards applications

The past two decades have also seen an impressive boom and development of a wide range of novel epitaxial materials, combinations and forms of materials

2D-materials have unambiguously demonstrated their high potential for the observation of novel quantum phenomena such as in electronics and photonics [28]


Recent works on graphene- and beyond-graphene-materials have established their large capacity for applications in various domains


Transistors [18-19]

Valleytronics [27]

Memory cells [26]

Photodetectors [20-21]

Batteries [22]

Transparent electrodes [23]

Energy storage [24-25]

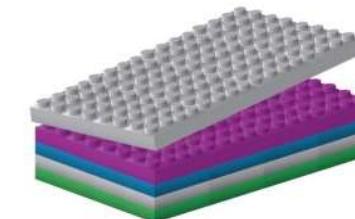
What do all these applications have in common?

Epitaxy

Epitaxial materials are the basis for device innovation

Motivations

Epitaxial growth is useful for applications that place stringent demands on a deposited layer:


- * High purity
- * Low defect density
- * Abrupt interfaces
- * Controlled material thickness and carrier concentration
- * Controlled doping profiles
- * Possibility to grow p-n junction & other multilayer structures
- * High repeatability and uniformity
- * Safe, efficient operation

Better
structural, optical, electrical...
properties

Can create clean, fresh surface for device fabrication

Epitaxy Fundamentals – few words !

Which epitaxial technique for the semiconductors ?

European Network for Innovative and Advanced Epitaxy

[43]

[44]

When selecting an epitaxial growth technology for a particular material system and/or device application, the choice needs to take into account:

- ✓ The basic principles of thermodynamics,
- ✓ Kinetics,
- ✓ Surface energies

...

Several epitaxial techniques have been used for the growth of epilayers of III-V, II-VI compound semiconductors, Oxyde and 2D-materials.

As well as practical issues of:

- ✓ Reproducibility,
- ✓ Scalability,
- ✓ Process control,
- ✓ Instrumentation,
- ✓ Safety and capital equipment costs.

- „ Liquid Phase Epitaxy (LPE),
- „ Molecular Beam Epitaxy (MBE) and the hybrid systems
- „ Vapor Phase Epitaxy (VPE) and the related techniques
- „ Pulsed laser deposition (PLD)
- „ Atomic Layer Deposition (ALD)
- „ ...

OPERA • COST ACTION CA20116

European Network for Innovative and Advanced Epitaxy

OPERA will build a new and innovative European Network composed of expert communities in epitaxial growth focusing on different materials classes: conventional semiconductors, oxides and 2D materials.

[Know More](#)[Follow us on Twitter](#)

LATEST NEWS

Postpone of the Workshop – “From Epitaxial Materials towards Technological Transfer: Academic/Industrial meeting”

APRIL 28, 2023

[VIEW ALL](#)

LATEST JOB OPPORTUNITIES

New Research Technologist position at CNR-IOM Trieste

MAY 24, 2023

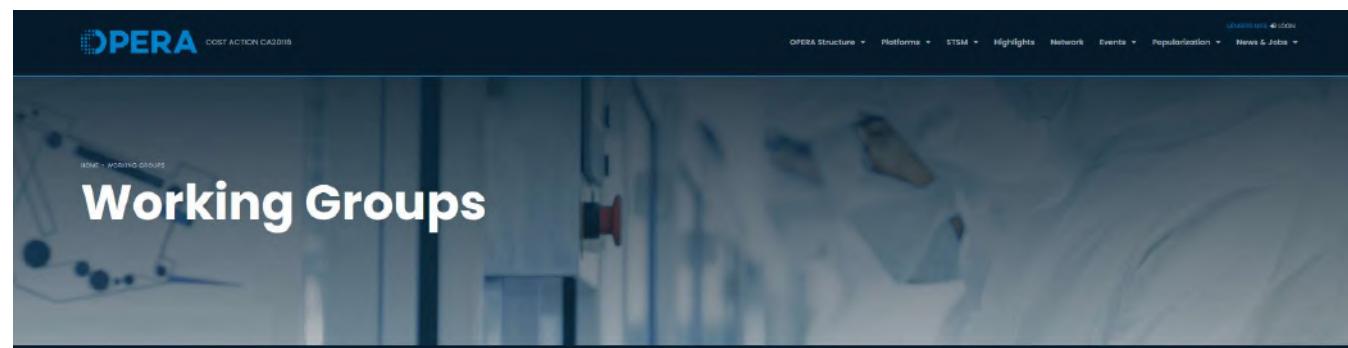
[VIEW ALL](#)

OPERA - Context & Needs

Today, material innovation is more vital than ever and needs to be more efficient, design-driven and environmentally friendly

Different “epitaxial” communities

- ❖ Materials oriented: *Silicon, III-V semiconductors, wide-band-gap materials, oxides, 2D-materials, 3D-metamaterials...*
- ❖ Deposition techniques: *MOVPE & MBE; LPE, CVD, ALD/ALE & MLD/ MLE, PLD*
- ❖ Focused communities: *NWs or QDs, epitaxial process (Van der Waals epitaxy), targeted applications (photovoltaic cells, gas sensors, white LEDs or flexible electronics...*


Organization of international conferences, workshops centered on materials, epitaxial techniques a good illustration of these community partitions !

Integrate and concern only a small part of working groups

We need

A broader structure of the epitaxy community in the thematic sense, with the aim of addressing common problems and pushing innovations beyond the boundaries !

Only by joint efforts from researchers from different communities, startup & industry with a sharing and open mindset

WG1

Fundamental research – New Materials

In material science, the ambition is to address new challenges, pushing the frontiers of knowledge. To address Sustainable Development Goals, the fundamental key in the epitaxy field must be addressed for mastering "actual" materials and developing new materials.

Objectives: To master the material growth under various forms (2D film, 3D structures, nanostructures); and to develop and control the growth of new materials, it is essential to understand the fundamental mechanisms driving their synthesis by closely combining experimental and theoretical approaches.

- **WG1.1** Fundamental aspects of epitaxy
- **WG1.2** Theory of epitaxy
- **WG1.3** Substrates and pre-growth: Towards hybridization
- **WG1.4** In-situ growth and characterization

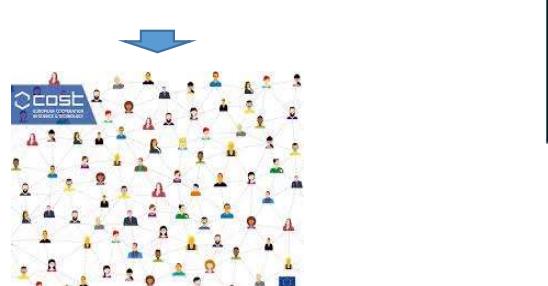
WG2

Applications-oriented material developments

Optimization of materials for innovative devices: Novel device performances rely on material properties. In this regard, materials must be developed considering device requirements.

Objectives: To make the bridge between fundamental researches (WG1) and industrial applications (WG3).

- **WG2.1** Characterization and control of novel functional materials;
- **WG2.2** Engineering epitaxial strategies for functional properties of devices;
- **WG2.3** Theoretical simulation of fundamental properties and functional devices;
- **WG2.4** New/optimized tools for growth and characterization.


WG3

Industry-oriented materials development and technological transfers

To develop technological transfer-ready devices, the fundamental challenges of tasks 1 & 2 must be addressed by taking into account market-proof device specifications.

Objectives: To convert scientific excellence into innovative solutions and establish disruptive technologies.

- **WG3.1** Assessment of materials requirements, development of advanced materials and technological transfers for: Photonics, Electronics, Energy, communication/information, Health and Environment;
- **WG3.2** Epitaxial tools and techniques: Because of the assessment of materials requirements, development of advanced materials/nanostructures and technological transfers is also based on the development of new techniques, new material sources and adequate and new substrates.

Gender distribution ITC grantees Young researchers

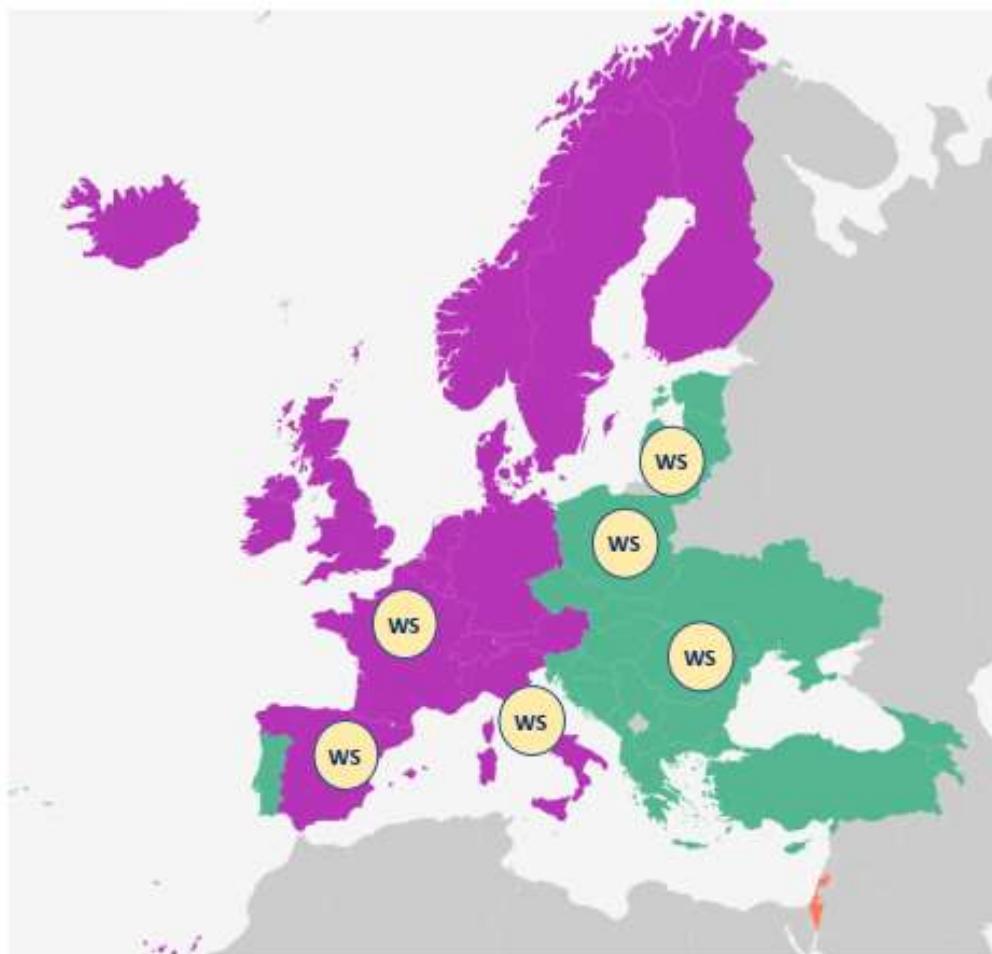
COST members: 34

ITC countries: 18

MC members balance
October 2024

4 Near-neighbouring countries

3 International partner countries



OPERA COST Action -
Partner Balance

Today: More than 800 persons subscribing the mailing list

OPERA Action – Workshops/Conferences

COST Action CA20116

European Network for Innovative
and Advanced Epitaxy

6 workshops/Conferences

2023 FIS Meeting – Warsaw, Poland – 10 to 12 December
Workshop on Innovative and Advanced Systems

OPERA
European Network for Innovative and Advanced Epitaxy

Funded by the European Union

2023 Workshop
OPERA
European Network for Innovative and Advanced Epitaxy

Workshop "Fundamental research - New Materials"
19 – 21 April ETSIT-UPM

19 April: Aula Magna edificio B (A-AM01)
20 and 21 April: Salón de actos edificio C

Funded by the European Union

2023 Workshop
OPERA
European Network for Innovative and Advanced Epitaxy

Workshop "From Epitaxial Materials towards Technological Transfer: Academic/Industrial meeting"
29 – 31 August 2023 C2N/Paris-Saclay Univ.

Funded by the European Union

2023 Workshop
OPERA
European Network for Innovative and Advanced Epitaxy

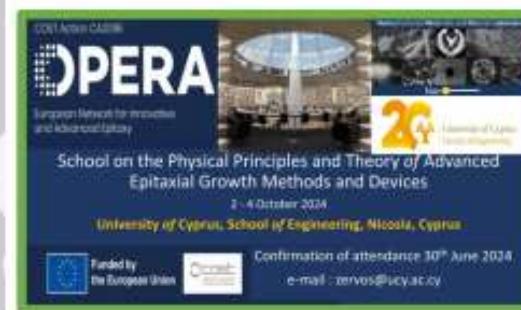
Workshop "Application-oriented material development"
12 – 14 September 2023 Bucharest-Magurele, Romania

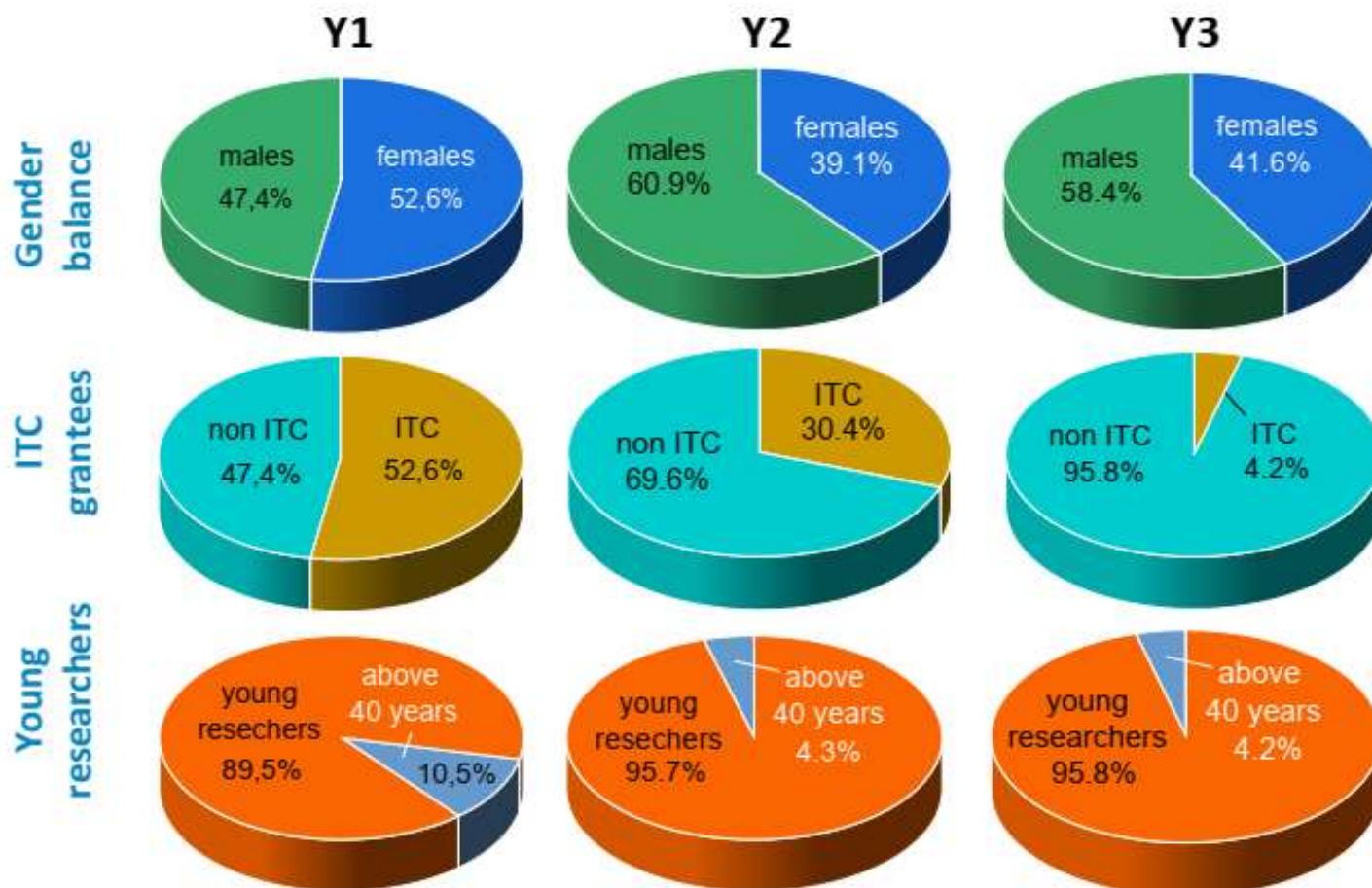
Funded by the European Union

2024 Workshop
OPERA
European Network for Innovative and Advanced Epitaxy

European Workshop on Innovative and Advanced Epitaxy
11 – 14 June, 2024
Center for Physical Sciences and Technology, Vilnius, Lithuania

Funded by the European Union


"European Conference on
OPERA
Innovative and Advanced Epitaxy"


"European Conference on
Innovative and Advanced Epitaxy"
19 – 23 May 2025
Palazzo del Castello
Scuola Normale Superiore
Pisa, Italy

Funded by the European Union

4 Training Schools

Home Countries: 19 + 1 NNC

Host Countries: 19 + 1 IPC

Average duration: 25,7 days

**Total Budget (Y1 – Y3)
129 k€**

Survey on the OPERA COST Action impact for

- Women, Young Researchers and ITC members
- Development of new collaboration
- Publications

COST Action CA2018

Scientific

- enabling researchers to work on emerging scientific topics
- facilitating access to research infrastructures through short-term scientific missions
- fostering opportunities for training
- increasing the generation of new knowledge and breakthrough discoveries

Networking

- creating open spaces for the free circulation of researchers and ideas
- helping to create a knowledge and innovation ecosystem linking an internal market for researchers and consumers
- increasing researchers' access to the wider research community across countries, generations, and gender in Europe and beyond
- promoting greater research cooperation and widening access to knowledge

Mobility and visibility

- stimulating international mobility and visibility
- generating short-term mobility with long-term impact

Career opportunities

- acting as incentive for the promotion of career development at European level
- fostering careers of young researchers

36 Stakeholders

Please sign the attendance list every day

COST Action CA20116

Enjoy the training school

Follow the training school

References and sources

1. Condens. Matter Phys. 2014, 5, 347
2. RSC Adv., 2014, 4, 51002
3. Chem. Soc. Rev., 2018, 47, 6073
4. <https://computerhistory.org/>
5. Applied Physics Letters 2017, 111, 061107
6. ACS Energy Letters 2018, 3, 1795
7. Applied Physics Express 2019, 12, 111006
8. Nanomaterials 2018, 8, 450
9. DOI: 10.5772/intechopen.94365
10. <https://rfengineer.net/rfic/soi-technology-lights-up-the-next-wave-of-photronics-solutions-features-feb-2021/>
11. Nature 2008, 452, 732
12. Nature Materials 2007, 6, 129
13. Nature 2004, 427, 423
14. Nature Materials 2015, 14, 801
15. Physics Review Letters 2016, 117, 096804
16. Science 2007, 317, 1196
17. Nature Materials 2015, 14, 500
18. Nature Review 2016, 1, 1
19. Nature Nanotechnology 2018, 13, 24
20. Optical Engineering 2019, 58, 057106
21. Nano Letters 2020, 20, 7200
22. ACS Nano 2011, 5, 4720
23. Nanoscale Horizon 2019, 4, 610
24. Science 2015, 347, 1246501
25. Renewable and Sustainable Energy Reviews 2021, 135, 110026
26. Nature Physics 2020, 16, 1028
27. Small 2018, 14, 20, 1801483
28. Nature Communications 2016, 7, 12398
29. Semiconductor Science and Technology 2016, 31, 093005
30. Nature 2012, 488, 189
31. Applied Physics Letters 2015, 106, 233101.
32. Science 2001, 293, 1455
33. DOI:10.1117/2.1201603.006385
34. Crystals 2019, 9, 87; doi:10.3390/crust9020087
35. Chem. Rev. 2020, 120, 3941–4006
36. <http://fy.chalmers.se/~yurgens/epitaxy.pdf>
37. http://atom.uwaterloo.ca/MNS/102/Lectures%202014/Lect_12B_sv.pdf
38. June 2019 Optics Express 27(12):A669
39. PhD Thesis Nao HARADA, 2021, Chimie ParisTech, Paris University
40. PhD Thesis N. Gogneau, 2004, CEA-Grenoble, Grenoble-Alpes University
41. To be complete
42. <https://phys.org/news/2018-02-scientists-nanowires.html>
43. Alamy stock photo
44. Nature volume 499, pages 419–425 (2013)
45. M. Morassi – Thesis 2018
46. G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice Academic, New York, 1989.
47. lpe-epi.com