

## PhD thesis Project - 2024/2027 "Topological-superconductor group IV nanomaterials"

**Context.** Progress in quantum computing stems from major advances in materials science and engineering, and their integration into novel fabrication techniques to develop scalable solid-state qubits architectures. Over the last decade, a plethora of solid-state quantum devices have been developed by combining multiple materials with inherently different properties within the same device - *heterogeneous integration*. This is a significant challenge in materials science, where quantum device operation with high performance requires a very high purity of the interface between two different materials. Any structural defect and roughness at the interface could compromise the ability to detect and manipulate quantum states in solid-state devices.

**Project.** The goal of this thesis is to develop a scalable material platform (a) where quantum properties can be engineered simply by tailoring the crystal structure of a single atomic element – Tin (Sn) – and achieve interfaces with the highest quality. Topological insulator/semimetal phases can be tailored in diamond cubic  $\alpha$ -Sn by controlling strain,<sup>1,2</sup> while body-centered tetragonal  $\beta$ -Sn behaves as a superconductor at temperatures below 4 K.<sup>3</sup> Currently, a controlled switch between  $\alpha/\beta$ -Sn phases is out of reach in a conventional thin film geometry. This thesis will establish the growth of defect-free one-dimensional (1D) Sn nanowires (NWs) on a Silicon wafer using a molecular beam epitaxy (MBE) system. In NWs a precise control over the growth of  $\alpha/\beta$ -Sn phases (i.e. topological/superconductor phases) becomes possible, resulting in defect-free atomically-sharp interfaces with the highest structural quality. This will provide a truly homogeneous integration of multiple states of matter in solid-state quantum devices, paving the way to explore the fundamental processes in topological quantum computation,<sup>4</sup> spintronics,<sup>5</sup> and quantum photonics.<sup>6</sup>



*Figure: (a) Allotropes of Sn. (b) Vertical NW array. (c) Single NW quantum device.* 

## Competences to be acquired.

- (i) Epitaxial growth of Sn NW arrays using MBE and chemical vapor deposition (CVD) tools.
- (ii) Structural characterization of the materials down to the atomic-level.
- (iii) Fabrication of single NW devices in a cleanroom facility.
- (iv) Magneto-transport measurements of the NW device at cryogenic temperatures (<1 K).

**Required skills.** Background in solid-state physics and materials science, interest in performing experiments in the lab, working in a collaborative team, and contributing to international collaborations.

Starting date. By the 1<sup>st</sup> October 2024.

**APPLY NOW!** 

Funding. The thesis was funded for its entire duration (3 years).

Supervisor. Dr. Simone Assali (CEA-IRIG/PHELIQS, Grenoble).

## Further reading.

- 1. Elemental Topological Insulator with Tunable Fermi Level: Strained  $\alpha$ -Sn on InSb(001).
- 2. Revisiting the physical origin and nature of surface states in inverted-band semiconductors.
- 3. Dramatic enhancement of superconductivity in single-crystalline nanowire arrays of  $\beta$ -Sn.
- 4. Topological Quantum Computation From Basic Concepts to First Experiments.
- 5. Switching of a Magnet by Spin-Orbit Torque from a Topological Dirac Semimetal.
- 6. Josephson junction infrared single-photon detector.

To apply for this position, send your application (CV, motivation letter, and transcripts) by e-mail to: <u>simone.assali@cea.fr</u>.